skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alkan, Melisa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Design of hetero tri metallic molecules, especially those containing at least two different metals with close atomic numbers, radii, and the same coordination number/environment is a challenging task. This quest is greatly facilitated by having a heterobimetallic parent molecule that features multiple metal sites with only some of those displaying substitutional flexibility. Recently, a unique heterobimetallic complex LiMn 2 (thd) 5 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) has been introduced as a single-source precursor for the preparation of a popular spinel cathode material, LiMn 2 O 4 . Theoretical calculations convincingly predict that in the above trinuclear molecule only one of the Mn sites is sufficiently flexible to be substituted with another 3d transition metal. Following those predictions, two hetero tri metallic complexes, LiMn 2−x Co x (thd) 5 ( x = 1 ( 1a ) and 0.5 ( 1b )), that represent full and partial substitution, respectively, of Co for Mn in the parent molecule, have been synthesized. X-ray structural elucidation clearly showed that only one transition metal position in the trinuclear molecule contains Co, while the other site remains fully occupied by Mn. A number of techniques have been employed for deciphering the structure and composition of hetero tri metallic compounds. Synchrotron resonant diffraction experiments unambiguously assigned 3d transition metal positions as well as provided a precise “site-specific Mn/Co elemental analysis” in a single crystal, even in an extremely difficult case of severely disordered structure formed by the superposition of two enantiomers. DART mass spectrometry and magnetic measurements clearly confirmed the presence of hetero tri metallic species LiMnCo(thd) 5 rather than a statistical mixture of two hetero bi metallic LiMn 2 (thd) 5 and LiCo 2 (thd) 5 molecules. Heterometallic precursors 1a and 1b were found to exhibit a clean decomposition yielding phase-pure LiMnCoO 4 and LiMn 1.5 Co 0.5 O 4 spinels, respectively, at the relatively low temperature of 400 °C. The latter oxide represents an important “5 V spinel” cathode material for the lithium ion batteries. Transmission electron microscopy confirmed a homogeneous distribution of transition metals in quaternary oxides obtained by pyrolysis of single-source precursors. 
    more » « less
  3. This work raises a fundamental question about the “real” structure of molecular compounds containing three different metals: whether they consist of genuine hetero tri metallic species or of a mixture of parent hetero bi metallic species. Heterotrimetallic complex Li 2 CoNi(tbaoac) 6 ( 1 , tbaoac = tert -butyl acetoacetate) has been designed based on the model tetranuclear structure featuring two transition metal sites in order to be utilized as a molecular precursor for the low-temperature preparation of the LiCo 0.5 Ni 0.5 O 2 battery cathode material. An investigation of the structure of 1 appeared to be very challenging, since the Co and Ni atoms have very similar atomic numbers, monoisotopic masses, and radii as well as the same oxidation state and coordination number/environment. Using a statistical analysis of heavily overlaid isotope distribution patterns of the [Li 2 MM′L 5 ] + (M/M′ = Co 2 , Ni 2 , and CoNi) ions in DART mass spectra, it was concluded that the reaction product 1 contains both heterotrimetallic and bimetallic species. A structural analogue approach has been applied to obtain Li 2 MMg(tbaoac) 6 (M = Co ( 2 ) and Ni ( 3 )) complexes that contain lighter, diamagnetic magnesium in the place of one of the 3d transition metals. X-ray crystallography, mass spectrometry, and NMR spectroscopy unambiguously confirmed the presence of three types of molecules in the reaction mixture that reaches an equilibrium, Li 2 M 2 L 6 + Li 2 Mg 2 L 6 ↔ 2Li 2 MMgL 6 , upon prolonged reflux in solution. The equilibrium mixture was shown to have a nearly statistical distribution of the three molecules, and this is fully supported by the results of theoretical calculations revealing that the stabilization energies of hetero tri metallic assemblies fall exactly in between those for the parent hetero bi metallic species. The LiCo 0.5 Ni 0.5 O 2 quaternary oxide has been obtained in its phase-pure form by thermal decomposition of heterometallic precursor 1 at temperatures as low as 450 °C. Its chemical composition, structure, morphology, and transition metal distribution have been studied by X-ray and electron diffraction techniques and compositional energy-dispersive X-ray mapping with nanometer resolution. The work clearly illustrates the advantages of heterometallic single-source precursors over the corresponding multi-source precursors. 
    more » « less
  4. Abstract A known trinuclear structure was used to design the heterobimetallic mixed‐valent, mixed‐ligand molecule [CoII(hfac)3−Na−CoIII(acac)3] (1). This was used as a template structure to develop heterotrimetallic molecules [CoII(hfac)3−Na−FeIII(acac)3] (2) and [NiII(hfac)3−Na−CoIII(acac)3] (3) via isovalent site‐specific substitution at either of the cobalt positions. Diffraction methods, synchrotron resonant diffraction, and multiple‐wavelength anomalous diffraction were applied beyond simple structural investigation to provide an unambiguous assignment of the positions and oxidation states for the periodic table neighbors in the heterometallic assemblies. Molecules of2and3are true heterotrimetallic rather than a statistical mixture of two heterobimetallic counterparts. Trinuclear platform1exhibits flexibility in accommodating a variety of di‐ and trivalent metals, which can be further utilized in the design of molecular precursors for the NaMM′O4functional oxide materials. 
    more » « less